Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using natural language processing to extract health-related causality from Twitter messages (1911.06488v1)

Published 15 Nov 2019 in cs.CL

Abstract: Twitter messages (tweets) contain various types of information, which include health-related information. Analysis of health-related tweets would help us understand health conditions and concerns encountered in our daily life. In this work, we evaluated an approach to extracting causal relations from tweets using NLP techniques. We focused on three health-related topics: stress", "insomnia", and "headache". We proposed a set of lexico-syntactic patterns based on dependency parser outputs to extract causal information. A large dataset consisting of 24 million tweets were used. The results show that our approach achieved an average precision between 74.59% and 92.27%. Analysis of extracted relations revealed interesting findings about health-related in Twitter.

Citations (8)

Summary

We haven't generated a summary for this paper yet.