Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Indian stock market using the psycho-linguistic features of financial news (1911.06193v1)

Published 7 Nov 2019 in q-fin.ST and cs.LG

Abstract: Financial forecasting using news articles is an emerging field. In this paper, we proposed hybrid intelligent models for stock market prediction using the psycholinguistic variables (LIWC and TAALES) extracted from news articles as predictor variables. For prediction purpose, we employed various intelligent techniques such as Multilayer Perceptron (MLP), Group Method of Data Handling (GMDH), General Regression Neural Network (GRNN), Random Forest (RF), Quantile Regression Random Forest (QRRF), Classification and regression tree (CART) and Support Vector Regression (SVR). We experimented on the data of 12 companies stocks, which are listed in the Bombay Stock Exchange (BSE). We employed chi-squared and maximum relevance and minimum redundancy (MRMR) feature selection techniques on the psycho-linguistic features obtained from the new articles etc. After extensive experimentation, using the Diebold-Mariano test, we conclude that GMDH and GRNN are statistically the best techniques in that order with respect to the MAPE and NRMSE values.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. B. Shravan Kumar (1 paper)
  2. Vadlamani Ravi (30 papers)
  3. Rishabh Miglani (1 paper)
Citations (12)

Summary

We haven't generated a summary for this paper yet.