Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Securely Computing the $n$-Variable Equality Function with $2n$ Cards (1911.05994v6)

Published 14 Nov 2019 in cs.CR

Abstract: Research in the area of secure multi-party computation using a deck of playing cards, often called card-based cryptography, started from the introduction of the five-card trick protocol to compute the logical AND function by den Boer in 1989. Since then, many card-based protocols to compute various functions have been developed. In this paper, we propose two new protocols that securely compute the $n$-variable equality function (determining whether all inputs are equal) $E: {0,1}n \rightarrow {0,1}$ using $2n$ cards. The first protocol can be generalized to compute any doubly symmetric function $f: {0,1}n \rightarrow \mathbb{Z}$ using $2n$ cards, and any symmetric function $f: {0,1}n \rightarrow \mathbb{Z}$ using $2n+2$ cards. The second protocol can be generalized to compute the $k$-candidate $n$-variable equality function $E: (\mathbb{Z}/k\mathbb{Z})n \rightarrow {0,1}$ using $2 \lceil \lg k \rceil n$ cards.

Citations (26)

Summary

We haven't generated a summary for this paper yet.