Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Spanners in the Message-Passing Model (1911.05991v2)

Published 14 Nov 2019 in cs.DS and cs.DC

Abstract: Graph spanners are sparse subgraphs which approximately preserve all pairwise shortest-path distances in an input graph. The notion of approximation can be additive, multiplicative, or both, and many variants of this problem have been extensively studied. We study the problem of computing a graph spanner when the edges of the input graph are distributed across two or more sites in an arbitrary, possibly worst-case partition, and the goal is for the sites to minimize the communication used to output a spanner. We assume the message-passing model of communication, for which there is a point-to-point link between all pairs of sites as well as a coordinator who is responsible for producing the output. We stress that the subset of edges that each site has is not related to the network topology, which is fixed to be point-to-point. While this model has been extensively studied for related problems such as graph connectivity, it has not been systematically studied for graph spanners. We present the first tradeoffs for total communication versus the quality of the spanners computed, for two or more sites, as well as for additive and multiplicative notions of distortion. We show separations in the communication complexity when edges are allowed to occur on multiple sites, versus when each edge occurs on at most one site. We obtain nearly tight bounds (up to polylog factors) for the communication of additive $2$-spanners in both the with and without duplication models, multiplicative $(2k-1)$-spanners in the with duplication model, and multiplicative $3$ and $5$-spanners in the without duplication model. Our lower bound for multiplicative $3$-spanners employs biregular bipartite graphs rather than the usual Erd\H{o}s girth conjecture graphs and may be of wider interest.

Citations (16)

Summary

We haven't generated a summary for this paper yet.