Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Relativized Alon Second Eigenvalue Conjecture III: Asymptotic Expansions for Tangle-Free Hashimoto Traces (1911.05710v1)

Published 13 Nov 2019 in cs.DM and math.CO

Abstract: This is the third in a series of articles devoted to showing that a typical covering map of large degree to a fixed, regular graph has its new adjacency eigenvalues within the bound conjectured by Alon for random regular graphs. In this paper we consider random graphs that are random covering graphs of large degree $n$ of a fixed base graph. We prove the existence of asympototic expansion in $1/n$ for the expected value of the number of strictly non-backtracking closed walks of length $k$ times the indicator function that the graph is free of certain {\em tangles}; moreover, we prove that the coefficients of these expansions are "nice functions" of $k$, namely approximately equal to a sum of polynomials in $k$ times exponential functions of $k$. Our results use the methods of Friedman used to resolve Alon's original conjecture, combined with the results of Article~II in this series of articles. One simplification in this article over the previous methods of Friedman is that the "regularlized traces" used in this article, which we call {\em certified traces}, are far easier to define and work with than the previously utilized {\em selective traces}.

Summary

We haven't generated a summary for this paper yet.