Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Self-Concordance and Sampling (1911.05656v2)

Published 13 Nov 2019 in cs.DS

Abstract: Motivated by the Dikin walk, we develop aspects of an interior-point theory for sampling in high dimension. Specifically, we introduce a symmetric parameter and the notion of strong self-concordance. These properties imply that the corresponding Dikin walk mixes in $\tilde{O}(n\bar{\nu})$ steps from a warm start in a convex body in $\mathbb{R}{n}$ using a strongly self-concordant barrier with symmetric self-concordance parameter $\bar{\nu}$. For many natural barriers, $\bar{\nu}$ is roughly bounded by $\nu$, the standard self-concordance parameter. We show that this property and strong self-concordance hold for the Lee-Sidford barrier. As a consequence, we obtain the first walk to mix in $\tilde{O}(n{2})$ steps for an arbitrary polytope in $\mathbb{R}{n}$. Strong self-concordance for other barriers leads to an interesting (and unexpected) connection -- for the universal and entropic barriers, it is implied by the KLS conjecture.

Citations (28)

Summary

We haven't generated a summary for this paper yet.