Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the Higher order Turán inequalities for $k$-regular partitions (1911.05264v4)

Published 13 Nov 2019 in math.NT and math.CO

Abstract: Nicolas and DeSalvo and Pak proved that the partition function $p(n)$ is log concave for $n \geq 25$. Chen, Jia and Wang proved that $p(n)$ satisfies the third order Tur\'{a}n inequality, and that the associated degree 3 Jensen polynomials are hyperbolic for $n \geq 94$. More recently, Griffin, Ono, Rolen and Zagier proved more generally that for all $d$, the degree $d$ Jensen polynomials associated to $p(n)$ are hyperbolic for sufficiently large $n$. In this paper, we prove that the same result holds for the $k$-regular partition function $p_k(n)$ for $k \geq 2$. In particular, for any positive integers $d$ and $k$, the order $d$ Tur\'{a}n inequalities hold for $p_k(n)$ for sufficiently large $n$. The case when $d = k = 2$ proves a conjecture by Neil Sloane that $p_2(n)$ is log concave.

Summary

We haven't generated a summary for this paper yet.