Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

0-1 phase transitions in sparse spiked matrix estimation (1911.05030v1)

Published 12 Nov 2019 in cs.IT, cond-mat.dis-nn, cs.LG, math.IT, and math.PR

Abstract: We consider statistical models of estimation of a rank-one matrix (the spike) corrupted by an additive gaussian noise matrix in the sparse limit. In this limit the underlying hidden vector (that constructs the rank-one matrix) has a number of non-zero components that scales sub-linearly with the total dimension of the vector, and the signal strength tends to infinity at an appropriate speed. We prove explicit low-dimensional variational formulas for the asymptotic mutual information between the spike and the observed noisy matrix in suitable sparse limits. For Bernoulli and Bernoulli-Rademacher distributed vectors, and when the sparsity and signal strength satisfy an appropriate scaling relation, these formulas imply sharp 0-1 phase transitions for the asymptotic minimum mean-square-error. A similar phase transition was analyzed recently in the context of sparse high-dimensional linear regression (compressive sensing).

Citations (15)

Summary

We haven't generated a summary for this paper yet.