Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially-Stationary Model for Holographic MIMO Small-Scale Fading (1911.04853v4)

Published 12 Nov 2019 in cs.IT, eess.SP, and math.IT

Abstract: Imagine an array with a massive (possibly uncountably infinite) number of antennas in a compact space. We refer to a system of this sort as Holographic MIMO. Given the impressive properties of Massive MIMO, one might expect a holographic array to realize extreme spatial resolution, incredible energy efficiency, and unprecedented spectral efficiency. At present, however, its fundamental limits have not been conclusively established. A major challenge for the analysis and understanding of such a paradigm shift is the lack of mathematically tractable and numerically reproducible channel models that retain some semblance to the physical reality. Detailed physical models are, in general, too complex for tractable analysis. This paper aims to take a closer look at this interdisciplinary challenge. Particularly, we consider the small-scale fading in the far-field, and we model it as a zero-mean, spatially-stationary, and correlated Gaussian scalar random field. Physically-meaningful correlation is obtained by requiring that the random field be consistent with the scalar Helmholtz equation. This formulation leads directly to a rather simple and exact description of the three-dimensional small-scale fading as a Fourier plane-wave spectral representation. Suitably discretized, this leads to a discrete representation for the field as a Fourier plane-wave series expansion, from which a computationally efficient way to generate samples of the small-scale fading over spatially-constrained compact spaces is developed. The connections with the conventional tools of linear systems theory and Fourier transform are thoroughly discussed.

Citations (185)

Summary

We haven't generated a summary for this paper yet.