Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Policy Gradients (1911.04817v1)

Published 12 Nov 2019 in cs.LG and stat.ML

Abstract: The goal of policy gradient approaches is to find a policy in a given class of policies which maximizes the expected return. Given a differentiable model of the policy, we want to apply a gradient-ascent technique to reach a local optimum. We mainly use gradient ascent, because it is theoretically well researched. The main issue is that the policy gradient with respect to the expected return is not available, thus we need to estimate it. As policy gradient algorithms also tend to require on-policy data for the gradient estimate, their biggest weakness is sample efficiency. For this reason, most research is focused on finding algorithms with improved sample efficiency. This paper provides a formal introduction to policy gradient that shows the development of policy gradient approaches, and should enable the reader to follow current research on the topic.

Citations (12)

Summary

We haven't generated a summary for this paper yet.