Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

White-Box Target Attack for EEG-Based BCI Regression Problems (1911.04606v1)

Published 7 Nov 2019 in cs.CR, cs.AI, cs.LG, and eess.SP

Abstract: Machine learning has achieved great success in many applications, including electroencephalogram (EEG) based brain-computer interfaces (BCIs). Unfortunately, many machine learning models are vulnerable to adversarial examples, which are crafted by adding deliberately designed perturbations to the original inputs. Many adversarial attack approaches for classification problems have been proposed, but few have considered target adversarial attacks for regression problems. This paper proposes two such approaches. More specifically, we consider white-box target attacks for regression problems, where we know all information about the regression model to be attacked, and want to design small perturbations to change the regression output by a pre-determined amount. Experiments on two BCI regression problems verified that both approaches are effective. Moreover, adversarial examples generated from both approaches are also transferable, which means that we can use adversarial examples generated from one known regression model to attack an unknown regression model, i.e., to perform black-box attacks. To our knowledge, this is the first study on adversarial attacks for EEG-based BCI regression problems, which calls for more attention on the security of BCI systems.

Citations (40)

Summary

We haven't generated a summary for this paper yet.