Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonconvex Low-Rank Tensor Completion from Noisy Data

Published 11 Nov 2019 in cs.LG, cs.IT, math.IT, math.OC, math.ST, stat.ML, and stat.TH | (1911.04436v2)

Abstract: We study a noisy tensor completion problem of broad practical interest, namely, the reconstruction of a low-rank tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for large-scale applications, or come with sub-optimal statistical guarantees. Focusing on "incoherent" and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm -- (vanilla) gradient descent following a rough initialization -- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves all individual tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e. minimal sample complexity and optimal estimation accuracy). The estimation errors are evenly spread out across all entries, thus achieving optimal $\ell_{\infty}$ statistical accuracy. We have also discussed how to extend our approach to accommodate asymmetric tensors. The insight conveyed through our analysis of nonconvex optimization might have implications for other tensor estimation problems.

Citations (80)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.