Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe Algorithm (1911.04415v5)

Published 11 Nov 2019 in math.OC, cs.DS, and cs.LG

Abstract: The approximate Carath\'eodory theorem states that given a compact convex set $\mathcal{C}\subset\mathbb{R}n$ and $p\in\left[2,+\infty\right[$, each point $x*\in\mathcal{C}$ can be approximated to $\epsilon$-accuracy in the $\ell_p$-norm as the convex combination of $\mathcal{O}(pD_p2/\epsilon2)$ vertices of $\mathcal{C}$, where $D_p$ is the diameter of $\mathcal{C}$ in the $\ell_p$-norm. A solution satisfying these properties can be built using probabilistic arguments or by applying mirror descent to the dual problem. We revisit the approximate Carath\'eodory problem by solving the primal problem via the Frank-Wolfe algorithm, providing a simplified analysis and leading to an efficient practical method. Furthermore, improved cardinality bounds are derived naturally using existing convergence rates of the Frank-Wolfe algorithm in different scenarios, when $x*$ is in the interior of $\mathcal{C}$, when $x*$ is the convex combination of a subset of vertices with small diameter, or when $\mathcal{C}$ is uniformly convex. We also propose cardinality bounds when $p\in\left[1,2\right[\cup{+\infty}$ via a nonsmooth variant of the algorithm. Lastly, we address the problem of finding sparse approximate projections onto $\mathcal{C}$ in the $\ell_p$-norm, $p\in\left[1,+\infty\right]$.

Citations (23)

Summary

We haven't generated a summary for this paper yet.