Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrence versus Transience for Weight-Dependent Random Connection Models (1911.04350v4)

Published 8 Nov 2019 in math.PR

Abstract: We investigate random graphs on the points of a Poisson process in $d$-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point carries an independent random mark and given marks and positions of the points we form an edge between two points independently with a probability depending via a kernel on the two marks and the distance of the points. Different kernels allow the mark to play different roles, like weight, radius or birth time of a vertex. The kernels depend on a parameter~$\gamma$, which determines the power-law exponent of the degree distributions. A further independent parameter $\delta$ characterises the decay of the connection probabilities of vertices as their distance increases. We prove transience of the infinite cluster in the entire supercritical phase in regimes given by the parameters $\gamma$ and~$\delta$, and complement these results by recurrence results if $d=2$. Our results are particularly interesting for the soft Boolean graph model discussed in the preprint [arXiv:2108:11252] and the age-dependent random connection model recently introduced by Gracar et al.\ [Queueing Syst. 93.3-4 (2019)]}

Summary

We haven't generated a summary for this paper yet.