Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Meta-Learning: Learning How to Learn Fairly (1911.04336v1)

Published 6 Nov 2019 in cs.LG and stat.ML

Abstract: Data sets for fairness relevant tasks can lack examples or be biased according to a specific label in a sensitive attribute. We demonstrate the usefulness of weight based meta-learning approaches in such situations. For models that can be trained through gradient descent, we demonstrate that there are some parameter configurations that allow models to be optimized from a few number of gradient steps and with minimal data which are both fair and accurate. To learn such weight sets, we adapt the popular MAML algorithm to Fair-MAML by the inclusion of a fairness regularization term. In practice, Fair-MAML allows practitioners to train fair machine learning models from only a few examples when data from related tasks is available. We empirically exhibit the value of this technique by comparing to relevant baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dylan Slack (17 papers)
  2. Sorelle Friedler (6 papers)
  3. Emile Givental (2 papers)
Citations (4)