2000 character limit reached
A critical point analysis of Landau--Ginzburg potentials with bulk in Gelfand--Cetlin systems (1911.04302v1)
Published 11 Nov 2019 in math.SG
Abstract: Using the bulk-deformation of Floer cohomology by Schubert cycles and non-Archimedean analysis of Fukaya--Oh--Ohta--Ono's bulk-deformed potential function, we prove that every complete flag manifold $\mathrm{Fl}(n)$ ($n \geq 3$) with a monotone Kirillov--Kostant--Souriau symplectic form carries a continuum of non-displaceable Lagrangian tori which degenerates to a non-torus fiber in the Hausdorff limit. In particular, the Lagrangian $S3$-fiber in $\mathrm{Fl}(3)$ is non-displaceable, answering the question of which was raised by Nohara--Ueda who computed its Floer cohomology to be vanishing.