Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Large-margin Softmax Loss for Speaker Diarisation (1911.03970v3)

Published 10 Nov 2019 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: Speaker diarisation systems nowadays use embeddings generated from speech segments in a bottleneck layer, which are needed to be discriminative for unseen speakers. It is well-known that large-margin training can improve the generalisation ability to unseen data, and its use in such open-set problems has been widespread. Therefore, this paper introduces a general approach to the large-margin softmax loss without any approximations to improve the quality of speaker embeddings for diarisation. Furthermore, a novel and simple way to stabilise training, when large-margin softmax is used, is proposed. Finally, to combat the effect of overlapping speech, different training margins are used to reduce the negative effect overlapping speech has on creating discriminative embeddings. Experiments on the AMI meeting corpus show that the use of large-margin softmax significantly improves the speaker error rate (SER). By using all hyper parameters of the loss in a unified way, further improvements were achieved which reached a relative SER reduction of 24.6% over the baseline. However, by training overlapping and single speaker speech samples with different margins, the best result was achieved, giving overall a 29.5% SER reduction relative to the baseline.

Citations (5)

Summary

We haven't generated a summary for this paper yet.