Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using LSTMs for climate change assessment studies on droughts and floods (1911.03941v2)

Published 10 Nov 2019 in cs.LG, physics.ao-ph, and stat.ML

Abstract: Climate change affects occurrences of floods and droughts worldwide. However, predicting climate impacts over individual watersheds is difficult, primarily because accurate hydrological forecasts require models that are calibrated to past data. In this work we present a large-scale LSTM-based modeling approach that -- by training on large data sets -- learns a diversity of hydrological behaviors. Previous work shows that this model is more accurate than current state-of-the-art models, even when the LSTM-based approach operates out-of-sample and the latter in-sample. In this work, we show how this model can assess the sensitivity of the underlying systems with regard to extreme (high and low) flows in individual watersheds over the continental US.

Citations (1)

Summary

We haven't generated a summary for this paper yet.