Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pluripotential Theory and Convex Bodies: A Siciak-Zaharjuta theorem (1911.03756v1)

Published 9 Nov 2019 in math.CV

Abstract: We work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body $P$ in $({\bf R}+)d$. We define the {\it logarithmic indicator function} on ${\bf C}d$: $$H_P(z):=\sup_{ J\in P} \log |z{ J}|:=\sup_{ J\in P} \log[|z_1|{ j_1}\cdots |z_d|{ j_d}]$$ and an associated class of plurisubharmonic (psh) functions: $$L_P:={u\in PSH({\bf C}d): u(z)- H_P(z) =0(1), \ |z| \to \infty }.$$ We first show that $L_P$ is not closed under standard smoothing operations. However, utilizing a continuous regularization due to Ferrier which preserves $L_P$, we prove a general Siciak-Zaharjuta type-result in our $P-$setting: the weighted $P-$extremal function $$V_{P,K,Q}(z):=\sup {u(z):u\in L_P, \ u\leq Q \ \hbox{on} \ K}$$ associated to a compact set $K$ and an admissible weight $Q$ on $K$ can be obtained using the subclass of $L_P$ arising from functions of the form $\frac{1}{deg_P(p)}\log |p|$ (appropriately normalized).

Summary

We haven't generated a summary for this paper yet.