Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentence Meta-Embeddings for Unsupervised Semantic Textual Similarity (1911.03700v3)

Published 9 Nov 2019 in cs.CL

Abstract: We address the task of unsupervised Semantic Textual Similarity (STS) by ensembling diverse pre-trained sentence encoders into sentence meta-embeddings. We apply, extend and evaluate different meta-embedding methods from the word embedding literature at the sentence level, including dimensionality reduction (Yin and Sch\"utze, 2016), generalized Canonical Correlation Analysis (Rastogi et al., 2015) and cross-view auto-encoders (Bollegala and Bao, 2018). Our sentence meta-embeddings set a new unsupervised State of The Art (SoTA) on the STS Benchmark and on the STS12-STS16 datasets, with gains of between 3.7% and 6.4% Pearson's r over single-source systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nina Poerner (9 papers)
  2. Ulli Waltinger (7 papers)
  3. Hinrich Schütze (250 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.