Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Deep Bilinear Transformation for Fine-grained Image Representation (1911.03621v1)

Published 9 Nov 2019 in cs.CV

Abstract: Bilinear feature transformation has shown the state-of-the-art performance in learning fine-grained image representations. However, the computational cost to learn pairwise interactions between deep feature channels is prohibitively expensive, which restricts this powerful transformation to be used in deep neural networks. In this paper, we propose a deep bilinear transformation (DBT) block, which can be deeply stacked in convolutional neural networks to learn fine-grained image representations. The DBT block can uniformly divide input channels into several semantic groups. As bilinear transformation can be represented by calculating pairwise interactions within each group, the computational cost can be heavily relieved. The output of each block is further obtained by aggregating intra-group bilinear features, with residuals from the entire input features. We found that the proposed network achieves new state-of-the-art in several fine-grained image recognition benchmarks, including CUB-Bird, Stanford-Car, and FGVC-Aircraft.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Heliang Zheng (18 papers)
  2. Jianlong Fu (91 papers)
  3. Zheng-Jun Zha (143 papers)
  4. Jiebo Luo (355 papers)
Citations (137)