Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Redundant Placement for Microservice-based Applications at the Edge (1911.03600v2)

Published 9 Nov 2019 in cs.DC and cs.SE

Abstract: Multi-access Edge Computing (MEC) is booming as a promising paradigm to push the computation and communication resources from cloud to the network edge to provide services and to perform computations. With container technologies, mobile devices with small memory footprint can run composite microservice-based applications without time-consuming backbone. Service placement at the edge is of importance to put MEC from theory into practice. However, current state-of-the-art research does not sufficiently take the composite property of services into consideration. Besides, although Kubernetes has certain abilities to heal container failures, high availability cannot be ensured due to heterogeneity and variability of edge sites. To deal with these problems, we propose a distributed redundant placement framework SAA-RP and a GA-based Server Selection (GASS) algorithm for microservice-based applications with sequential combinatorial structure. We formulate a stochastic optimization problem with the uncertainty of microservice request considered, and then decide for each microservice, how it should be deployed and with how many instances as well as on which edge sites to place them. Benchmark policies are implemented in two scenarios, where redundancy is allowed and not, respectively. Numerical results based on a real-world dataset verify that GASS significantly outperforms all the benchmark policies.

Citations (54)

Summary

We haven't generated a summary for this paper yet.