Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization (1911.03539v2)

Published 8 Nov 2019 in math.OC, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator -- that is, a measurable function of the observation -- and a fictitious adversary choosing a prior -- that is, a pair of signal and noise distributions ranging over independent Wasserstein balls -- with the goal to minimize and maximize the expected squared estimation error, respectively. We show that if the Wasserstein balls are centered at normal distributions, then the zero-sum game admits a Nash equilibrium, where the players' optimal strategies are given by an {\em affine} estimator and a {\em normal} prior, respectively. We further prove that this Nash equilibrium can be computed by solving a tractable convex program. Finally, we develop a Frank-Wolfe algorithm that can solve this convex program orders of magnitude faster than state-of-the-art general purpose solvers. We show that this algorithm enjoys a linear convergence rate and that its direction-finding subproblems can be solved in quasi-closed form.

Citations (44)

Summary

We haven't generated a summary for this paper yet.