Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

On approximating the shape of one dimensional functions (1911.03045v1)

Published 8 Nov 2019 in math.NA and cs.NA

Abstract: Consider an $s$-dimensional function being evaluated at $n$ points of a low discrepancy sequence (LDS), where the objective is to approximate the one-dimensional functions that result from integrating out $(s-1)$ variables. Here, the emphasis is on accurately approximating the shape of such \emph{one-dimensional} functions. Approximating this shape when the function is evaluated on a set of grid points instead is relatively straightforward. However, the number of grid points needed increases exponentially with $s$. LDS are known to be increasingly more efficient at integrating $s$-dimensional functions compared to grids, as $s$ increases. Yet, a method to approximate the shape of a one-dimensional function when the function is evaluated using an $s$-dimensional LDS has not been proposed thus far. We propose an approximation method for this problem. This method is based on an $s$-dimensional integration rule together with fitting a polynomial smoothing function. We state and prove results showing conditions under which this polynomial smoothing function will converge to the true one-dimensional function. We also demonstrate the computational efficiency of the new approach compared to a grid based approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.