Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QPALM: A Newton-type Proximal Augmented Lagrangian Method for Quadratic Programs (1911.02934v1)

Published 7 Nov 2019 in math.OC

Abstract: We present a proximal augmented Lagrangian based solver for general convex quadratic programs (QPs), relying on semismooth Newton iterations with exact line search to solve the inner subproblems. The exact line search reduces in this case to finding the zero of a one-dimensional monotone, piecewise affine function and can be carried out very efficiently. Our algorithm requires the solution of a linear system at every iteration, but as the matrix to be factorized depends on the active constraints, efficient sparse factorization updates can be employed like in active-set methods. Both primal and dual residuals can be enforced down to strict tolerances and otherwise infeasibility can be detected from intermediate iterates. A C implementation of the proposed algorithm is tested and benchmarked against other state-of-the-art QP solvers for a large variety of problem data and shown to compare favorably against these solvers.

Summary

We haven't generated a summary for this paper yet.