Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data transforming augmentation for heteroscedastic models (1911.02748v2)

Published 7 Nov 2019 in stat.ME and stat.CO

Abstract: Data augmentation (DA) turns seemingly intractable computational problems into simple ones by augmenting latent missing data. In addition to computational simplicity, it is now well-established that DA equipped with a deterministic transformation can improve the convergence speed of iterative algorithms such as an EM algorithm or Gibbs sampler. In this article, we outline a framework for the transformation-based DA, which we call data transforming augmentation (DTA), allowing augmented data to be a deterministic function of latent and observed data, and unknown parameters. Under this framework, we investigate a novel DTA scheme that turns heteroscedastic models into homoscedastic ones to take advantage of simpler computations typically available in homoscedastic cases. Applying this DTA scheme to fitting linear mixed models, we demonstrate simpler computations and faster convergence rates of resulting iterative algorithms, compared with those under a non-transformation-based DA scheme. We also fit a Beta-Binomial model using the proposed DTA scheme, which enables sampling approximate marginal posterior distributions that are available only under homoscedasticity. An R package, Rdta, is publicly available at CRAN.

Summary

We haven't generated a summary for this paper yet.