Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Minimax Nonparametric Two-sample Test under Smoothing (1911.02171v4)

Published 6 Nov 2019 in stat.ME, math.ST, stat.AP, stat.ML, and stat.TH

Abstract: We consider the problem of comparing probability densities between two groups. A new probabilistic tensor product smoothing spline framework is developed to model the joint density of two variables. Under such a framework, the probability density comparison is equivalent to testing the presence/absence of interactions. We propose a penalized likelihood ratio test for such interaction testing and show that the test statistic is asymptotically chi-square distributed under the null hypothesis. Furthermore, we derive a sharp minimax testing rate based on the Bernstein width for nonparametric two-sample tests and show that our proposed test statistics is minimax optimal. In addition, a data-adaptive tuning criterion is developed to choose the penalty parameter. Simulations and real applications demonstrate that the proposed test outperforms the conventional approaches under various scenarios.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.