Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposability of orthogonal involutions in degree 12 (1911.01782v1)

Published 5 Nov 2019 in math.KT

Abstract: A theorem of Pfister asserts that every $12$-dimensional quadratic form with trivial discriminant and trivial Clifford invariant over a field of characteristic different from $2$ decomposes as a tensor product of a binary quadratic form and a $6$-dimensional quadratic form with trivial discriminant. The main result of the paper extends Pfister's result to orthogonal involutions: every central simple algebra of degree $12$ with orthogonal involution of trivial discriminant and trivial Clifford invariant decomposes into a tensor product of a quaternion algebra and a central simple algebra of degree $6$ with orthogonal involutions. This decomposition is used to establish a criterion for the existence of orthogonal involutions with trivial invariants on algebras of degree $12$, and to calculate the $f_3$-invariant of the involution if the algebra has index $2$.

Summary

We haven't generated a summary for this paper yet.