Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Potential-Based Bounds for Prediction with Expert Advice (1911.01641v3)

Published 5 Nov 2019 in cs.LG, cs.GT, math.AP, math.OC, and stat.ML

Abstract: This work addresses the classic machine learning problem of online prediction with expert advice. We consider the finite-horizon version of this zero-sum, two-person game. Using verification arguments from optimal control theory, we view the task of finding better lower and upper bounds on the value of the game (regret) as the problem of finding better sub- and supersolutions of certain partial differential equations (PDEs). These sub- and supersolutions serve as the potentials for player and adversary strategies, which lead to the corresponding bounds. To get explicit bounds, we use closed-form solutions of specific PDEs. Our bounds hold for any given number of experts and horizon; in certain regimes (which we identify) they improve upon the previous state of the art. For two and three experts, our bounds provide the optimal leading order term.

Citations (21)

Summary

We haven't generated a summary for this paper yet.