Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Bidirectional Decoding with Dynamic Target Semantics in Neural Machine Translation (1911.01597v1)

Published 5 Nov 2019 in cs.CL

Abstract: Generally, Neural Machine Translation models generate target words in a left-to-right (L2R) manner and fail to exploit any future (right) semantics information, which usually produces an unbalanced translation. Recent works attempt to utilize the right-to-left (R2L) decoder in bidirectional decoding to alleviate this problem. In this paper, we propose a novel \textbf{D}ynamic \textbf{I}nteraction \textbf{M}odule (\textbf{DIM}) to dynamically exploit target semantics from R2L translation for enhancing the L2R translation quality. Different from other bidirectional decoding approaches, DIM firstly extracts helpful target information through addressing and reading operations, then updates target semantics for tracking the interactive history. Additionally, we further introduce an \textbf{agreement regularization} term into the training objective to narrow the gap between L2R and R2L translations. Experimental results on NIST Chinese$\Rightarrow$English and WMT'16 English$\Rightarrow$Romanian translation tasks show that our system achieves significant improvements over baseline systems, which also reaches comparable results compared to the state-of-the-art Transformer model with much fewer parameters of it.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yong Shan (7 papers)
  2. Yang Feng (230 papers)
  3. Jinchao Zhang (49 papers)
  4. Fandong Meng (174 papers)
  5. Wen Zhang (170 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.