Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Failure of Aspect Sentiment Classifiers and an Adaptive Re-weighting Solution (1911.01460v1)

Published 4 Nov 2019 in cs.CL

Abstract: Aspect-based sentiment classification (ASC) is an important task in fine-grained sentiment analysis.~Deep supervised ASC approaches typically model this task as a pair-wise classification task that takes an aspect and a sentence containing the aspect and outputs the polarity of the aspect in that sentence. However, we discovered that many existing approaches fail to learn an effective ASC classifier but more like a sentence-level sentiment classifier because they have difficulty to handle sentences with different polarities for different aspects.~This paper first demonstrates this problem using several state-of-the-art ASC models. It then proposes a novel and general adaptive re-weighting (ARW) scheme to adjust the training to dramatically improve ASC for such complex sentences. Experimental results show that the proposed framework is effective \footnote{The dataset and code are available at \url{https://github.com/howardhsu/ASC_failure}.}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hu Xu (87 papers)
  2. Bing Liu (212 papers)
  3. Lei Shu (82 papers)
  4. Philip S. Yu (592 papers)
Citations (6)