Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CloudifierNet -- Deep Vision Models for Artificial Image Processing (1911.01346v2)

Published 4 Nov 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Today, more and more, it is necessary that most applications and documents developed in previous or current technologies to be accessible online on cloud-based infrastructures. That is why the migration of legacy systems including their hosts of documents to new technologies and online infrastructures, using modern Artificial Intelligence techniques, is absolutely necessary. With the advancement of Artificial Intelligence and Deep Learning with its multitude of applications, a new area of research is emerging - that of automated systems development and maintenance. The underlying work objective that led to this paper aims to research and develop truly intelligent systems able to analyze user interfaces from various sources and generate real and usable inferences ranging from architecture analysis to actual code generation. One key element of such systems is that of artificial scene detection and analysis based on deep learning computer vision systems. Computer vision models and particularly deep directed acyclic graphs based on convolutional modules are generally constructed and trained based on natural images datasets. Due to this fact, the models will develop during the training process natural image feature detectors apart from the base graph modules that will learn basic primitive features. In the current paper, we will present the base principles of a deep neural pipeline for computer vision applied to artificial scenes (scenes generated by user interfaces or similar). Finally, we will present the conclusions based on experimental development and benchmarking against state-of-the-art transfer-learning implemented deep vision models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Andrei Damian (4 papers)
  2. Laurentiu Piciu (5 papers)
  3. Alexandru Purdila (2 papers)
  4. Nicolae Tapus (16 papers)