Adams' trace principle on Morrey-Lorentz spaces over $β$-Hausdorff dimensional surfaces (1911.00917v4)
Abstract: In this paper we strengthen to Morrey-Lorentz spaces the famous trace principle introduced by Adams. More precisely, we show that Riesz potential $I_{\alpha}$ is continuous \begin{equation} \Vert I_{\alpha}f\Vert_{\mathcal{M}{q, \infty}{\lambda{\ast}}(d\mu)}\lesssim \Arrowvert\mu\Arrowvert_{\beta}{{1}/{q}}\,\Vert f\Vert_{\mathcal{M}{p, \infty}{\lambda}(d\nu)}\nonumber\[0.02in] \end{equation} if and only if the Radon measure $d\mu$ supported in $\Omega\subset \mathbb{R}n$ is controlled by $$\Arrowvert\mu\Arrowvert{\beta}=\sup_{x\in\mathbb{R}n,\,r>0}r{-\beta}\mu(B(x,r))<\infty$$ provided that $1<p<q<\infty$ satisfies $n-\alpha p<\beta\leq n,\; \alpha=\frac{n}{\lambda}-\frac{\beta}{\lambda_\ast}\; \text{ and }\;\frac{\lambda_\ast}{q}\leq \frac{\lambda}{p}\nonumber\,$. Our result provide a new class of functions spaces which is larger than previous ones, since we have strict continuous inclusions $\dot{B}{p,\infty}{s}\hookrightarrow L{\lambda, \infty}\hookrightarrow \mathcal{M}{p}{\lambda}\hookrightarrow\mathcal{M}_{p, \infty}{\lambda} \nonumber $ as $1<p<\lambda<\infty$ and $s\in\mathbb{R}$ satisfies $\frac{1}{p}-\frac{s}{n}=\frac{1}{\lambda}$. If $d\mu$ is concentrated on $\partial\mathbb{R}n_+$, as a byproduct we get Sobolev-Morrey trace inequality on half-spaces $\mathbb{R}n_+$ which recovers the well-known Sobolev-trace inequality in $Lp(\mathbb{R}n_+)$. Also, by a suitable analysis on non-doubling Cader\'on-Zygmund decomposition we show that \begin{equation} \Vert M_{\alpha}f\Vert_{\mathcal{M}{p, \ell}{\lambda}(d\mu)}\,\sim\, \Vert I{\alpha}f\Vert_{\mathcal{M}_{p, \ell}{\lambda}(d\mu)}\nonumber \end{equation} provided that $\mu(B_r(x))\sim r{\beta}$ on support $\text{spt}(\mu)$ and $n-\alpha <\beta\leq n$ with $0<\alpha<n$. This result extends the previous ones.