Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GRAPHENE: A Precise Biomedical Literature Retrieval Engine with Graph Augmented Deep Learning and External Knowledge Empowerment (1911.00760v2)

Published 2 Nov 2019 in cs.IR, cs.CL, and cs.DL

Abstract: Effective biomedical literature retrieval (BLR) plays a central role in precision medicine informatics. In this paper, we propose GRAPHENE, which is a deep learning based framework for precise BLR. GRAPHENE consists of three main different modules 1) graph-augmented document representation learning; 2) query expansion and representation learning and 3) learning to rank biomedical articles. The graph-augmented document representation learning module constructs a document-concept graph containing biomedical concept nodes and document nodes so that global biomedical related concept from external knowledge source can be captured, which is further connected to a BiLSTM so both local and global topics can be explored. Query expansion and representation learning module expands the query with abbreviations and different names, and then builds a CNN-based model to convolve the expanded query and obtain a vector representation for each query. Learning to rank minimizes a ranking loss between biomedical articles with the query to learn the retrieval function. Experimental results on applying our system to TREC Precision Medicine track data are provided to demonstrate its effectiveness.

Citations (14)

Summary

We haven't generated a summary for this paper yet.