Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse inversion for derivative of log determinant (1911.00685v1)

Published 2 Nov 2019 in stat.CO, cs.NA, math.NA, and stat.ML

Abstract: Algorithms for Gaussian process, marginal likelihood methods or restricted maximum likelihood methods often require derivatives of log determinant terms. These log determinants are usually parametric with variance parameters of the underlying statistical models. This paper demonstrates that, when the underlying matrix is sparse, how to take the advantage of sparse inversion---selected inversion which share the same sparsity as the original matrix---to accelerate evaluating the derivative of log determinant.

Citations (5)

Summary

We haven't generated a summary for this paper yet.