Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting word error rate for reverberant speech (1911.00566v2)

Published 1 Nov 2019 in eess.AS and cs.SD

Abstract: Reverberation negatively impacts the performance of automatic speech recognition (ASR). Prior work on quantifying the effect of reverberation has shown that clarity (C50), a parameter that can be estimated from the acoustic impulse response, is correlated with ASR performance. In this paper we propose predicting ASR performance in terms of the word error rate (WER) directly from acoustic parameters via a polynomial, sigmoidal, or neural network fit, as well as blindly from reverberant speech samples using a convolutional neural network (CNN). We carry out experiments on two state-of-the-art ASR models and a large set of acoustic impulse responses (AIRs). The results confirm C50 and C80 to be highly correlated with WER, allowing WER to be predicted with the proposed fitting approaches. The proposed non-intrusive CNN model outperforms C50-based WER prediction, indicating that WER can be estimated blindly, i.e., directly from the reverberant speech samples without knowledge of the acoustic parameters.

Citations (9)

Summary

We haven't generated a summary for this paper yet.