Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum State Discrimination Using Noisy Quantum Neural Networks (1911.00352v3)

Published 1 Nov 2019 in quant-ph

Abstract: Near-term quantum computers are noisy, and therefore must run algorithms with a low circuit depth and qubit count. Here we investigate how noise affects a quantum neural network (QNN) for state discrimination, applicable on near-term quantum devices as it fulfils the above criteria. We find that when simulating gradient calculation on a noisy device, a large number of parameters is disadvantageous. By introducing a new smaller circuit ansatz we overcome this limitation, and find that the QNN performs well at noise levels of current quantum hardware. We also show that networks trained at higher noise levels can still converge to useful parameters. Our findings show that noisy quantum computers can be used in applications for state discrimination and for classifiers of the output of quantum generative adversarial networks.

Citations (25)

Summary

We haven't generated a summary for this paper yet.