Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cortical credit assignment by Hebbian, neuromodulatory and inhibitory plasticity (1911.00307v1)

Published 1 Nov 2019 in q-bio.NC and cond-mat.dis-nn

Abstract: The cortex learns to make associations between stimuli and spiking activity which supports behaviour. It does this by adjusting synaptic weights. The complexity of these transformations implies that synapses have to change without access to the full error information, a problem typically referred to as "credit-assignment". However, it remains unknown how the cortex solves this problem. We propose that a combination of plasticity rules, 1) Hebbian, 2) acetylcholine-dependent and 3) noradrenaline-dependent excitatory plasticity, together with 4) inhibitory plasticity restoring E/I balance, effectively solves the credit assignment problem. We derive conditions under-which a neuron model can learn a number of associations approaching its theoretical capacity. We confirm our predictions regarding acetylcholine-dependent and inhibitory plasticity by reanalysing experimental data. Our work suggests that detailed cortical E/I balance reduces the dimensionality of the problem of associating inputs with outputs, thereby allowing imperfect "supervision" by neuromodulatory systems to guide learning effectively.

Summary

We haven't generated a summary for this paper yet.