Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ALERT: Accurate Learning for Energy and Timeliness (1911.00119v2)

Published 31 Oct 2019 in cs.PF and cs.LG

Abstract: An increasing number of software applications incorporate runtime Deep Neural Networks (DNNs) to process sensor data and return inference results to humans. Effective deployment of DNNs in these interactive scenarios requires meeting latency and accuracy constraints while minimizing energy, a problem exacerbated by common system dynamics. Prior approaches handle dynamics through either (1) system-oblivious DNN adaptation, which adjusts DNN latency/accuracy tradeoffs, or (2) application-oblivious system adaptation, which adjusts resources to change latency/energy tradeoffs. In contrast, this paper improves on the state-of-the-art by coordinating application- and system-level adaptation. ALERT, our runtime scheduler, uses a probabilistic model to detect environmental volatility and then simultaneously select both a DNN and a system resource configuration to meet latency, accuracy, and energy constraints. We evaluate ALERT on CPU and GPU platforms for image and speech tasks in dynamic environments. ALERT's holistic approach achieves more than 13% energy reduction, and 27% error reduction over prior approaches that adapt solely at the application or system level. Furthermore, ALERT incurs only 3% more energy consumption and 2% higher DNN-inference error than an oracle scheme with perfect application and system knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Chengcheng Wan (14 papers)
  2. Muhammad Santriaji (2 papers)
  3. Eri Rogers (1 paper)
  4. Henry Hoffmann (21 papers)
  5. Michael Maire (40 papers)
  6. Shan Lu (31 papers)
Citations (40)