Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Multi-task Gaussian Processes (1911.00002v1)

Published 31 Oct 2019 in stat.ML and cs.LG

Abstract: We address the problem of continual learning in multi-task Gaussian process (GP) models for handling sequential input-output observations. Our approach extends the existing prior-posterior recursion of online Bayesian inference, i.e.\ past posterior discoveries become future prior beliefs, to the infinite functional space setting of GP. For a reason of scalability, we introduce variational inference together with an sparse approximation based on inducing inputs. As a consequence, we obtain tractable continual lower-bounds where two novel Kullback-Leibler (KL) divergences intervene in a natural way. The key technical property of our method is the recursive reconstruction of conditional GP priors conditioned on the variational parameters learned so far. To achieve this goal, we introduce a novel factorization of past variational distributions, where the predictive GP equation propagates the posterior uncertainty forward. We then demonstrate that it is possible to derive GP models over many types of sequential observations, either discrete or continuous and amenable to stochastic optimization. The continual inference approach is also applicable to scenarios where potential multi-channel or heterogeneous observations might appear. Extensive experiments demonstrate that the method is fully scalable, shows a reliable performance and is robust to uncertainty error propagation over a plenty of synthetic and real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (13)

Summary

We haven't generated a summary for this paper yet.