Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LiDAR-Flow: Dense Scene Flow Estimation from Sparse LiDAR and Stereo Images (1910.14453v2)

Published 31 Oct 2019 in cs.CV and cs.RO

Abstract: We propose a new approach called LiDAR-Flow to robustly estimate a dense scene flow by fusing a sparse LiDAR with stereo images. We take the advantage of the high accuracy of LiDAR to resolve the lack of information in some regions of stereo images due to textureless objects, shadows, ill-conditioned light environment and many more. Additionally, this fusion can overcome the difficulty of matching unstructured 3D points between LiDAR-only scans. Our LiDAR-Flow approach consists of three main steps; each of them exploits LiDAR measurements. First, we build strong seeds from LiDAR to enhance the robustness of matches between stereo images. The imagery part seeks the motion matches and increases the density of scene flow estimation. Then, a consistency check employs LiDAR seeds to remove the possible mismatches. Finally, LiDAR measurements constraint the edge-preserving interpolation method to fill the remaining gaps. In our evaluation we investigate the individual processing steps of our LiDAR-Flow approach and demonstrate the superior performance compared to image-only approach.

Citations (28)

Summary

We haven't generated a summary for this paper yet.