Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow (1910.14448v3)

Published 30 Oct 2019 in eess.SY, cs.LG, and cs.SY

Abstract: We develop DeepOPF as a Deep Neural Network (DNN) approach for solving security-constrained direct current optimal power flow (SC-DCOPF) problems, which are critical for reliable and cost-effective power system operation.DeepOPF is inspired by the observation that solving SC-DCOPF problems for a given power network is equivalent to depicting a high-dimensional mapping from the load inputs to the generation and phase angle outputs. We first train a DNN to learn the mapping and predict the generations from the load inputs. We then directly reconstruct the phase angles from the generations and loads by using the power flow equations. Such a predict-and-reconstruct approach reduces the dimension of the mapping to learn, subsequently cutting down the size of the DNN and the amount of training data needed. We further derive a condition for tuning the size of the DNN according to the desired approximation accuracy of the load-generation mapping. We develop a post-processing procedure based on $\ell_1$-projection to ensure the feasibility of the obtained solution, which can be of independent interest. Simulation results for IEEE test cases show that DeepOPF generates feasible solutions with less than 0.2% optimality loss, while speeding up the computation time by up to two orders of magnitude as compared to a state-of-the-art solver.

Citations (144)

Summary

We haven't generated a summary for this paper yet.