Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized linear algebra for model reduction. Part II: minimal residual methods and dictionary-based approximation (1910.14378v2)

Published 31 Oct 2019 in math.NA and cs.NA

Abstract: A methodology for using random sketching in the context of model order reduction for high-dimensional parameter-dependent systems of equations was introduced in [Balabanov and Nouy 2019, Part I]. Following this framework, we here construct a reduced model from a small, efficiently computable random object called a sketch of a reduced model, using minimal residual methods. We introduce a sketched version of the minimal residual based projection as well as a novel nonlinear approximation method, where for each parameter value, the solution is approximated by minimal residual projection onto a subspace spanned by several vectors picked (online) from a dictionary of candidate basis vectors. It is shown that random sketching technique can improve not only efficiency but also numerical stability. A rigorous analysis of the conditions on the random sketch required to obtain a given accuracy is presented. These conditions may be ensured a priori with high probability by considering for the sketching matrix an oblivious embedding of sufficiently large size. Furthermore, a simple and reliable procedure for a posteriori verification of the quality of the sketch is provided. This approach can be used for certification of the approximation as well as for adaptive selection of the size of the random sketching matrix.

Citations (24)

Summary

We haven't generated a summary for this paper yet.