Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duality and Stability in Complex Multiagent State-Dependent Network Dynamics (1910.14081v3)

Published 30 Oct 2019 in eess.SY, cs.MA, cs.SY, math.DS, and math.OC

Abstract: Despite significant progress on stability analysis of conventional multiagent networked systems with weakly coupled state-network dynamics, most of the existing results have shortcomings in addressing multiagent systems with highly coupled state-network dynamics. Motivated by numerous applications of such dynamics, in our previous work [1], we initiated a new direction for stability analysis of such systems that uses a sequential optimization framework. Building upon that, in this paper, we extend our results by providing another angle on multiagent network dynamics from a duality perspective, which allows us to view the network structure as dual variables of a constrained nonlinear program. Leveraging that idea, we show that the evolution of the coupled state-network multiagent dynamics can be viewed as iterates of a primal-dual algorithm for a static constrained optimization/saddle-point problem. This view bridges the Lyapunov stability of state-dependent network dynamics and frequently used optimization techniques such as block coordinated descent, mirror descent, the Newton method, and the subgradient method. As a result, we develop a systematic framework for analyzing the Lyapunov stability of state-dependent network dynamics using techniques from nonlinear optimization. Finally, we support our theoretical results through numerical simulations from social science.

Citations (2)

Summary

We haven't generated a summary for this paper yet.