Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling (1910.14063v1)

Published 30 Oct 2019 in cs.GR and cs.CV

Abstract: 3D models are commonly used in computer vision and graphics. With the wider availability of mesh data, an efficient and intrinsic deep learning approach to processing 3D meshes is in great need. Unlike images, 3D meshes have irregular connectivity, requiring careful design to capture relations in the data. To utilize the topology information while staying robust under different triangulation, we propose to encode mesh connectivity using Laplacian spectral analysis, along with Mesh Pooling Blocks (MPBs) that can split the surface domain into local pooling patches and aggregate global information among them. We build a mesh hierarchy from fine to coarse using Laplacian spectral clustering, which is flexible under isometric transformation. Inside the MPBs there are pooling layers to collect local information and multi-layer perceptrons to compute vertex features with increasing complexity. To obtain the relationships among different clusters, we introduce a Correlation Net to compute a correlation matrix, which can aggregate the features globally by matrix multiplication with cluster features. Our network architecture is flexible enough to be used on meshes with different numbers of vertices. We conduct several experiments including shape segmentation and classification, and our LaplacianNet outperforms state-of-the-art algorithms for these tasks on ShapeNet and COSEG datasets.

Citations (13)

Summary

We haven't generated a summary for this paper yet.