Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion-Nets: 6D Tracking of Unknown Objects in Unseen Environments using RGB (1910.13942v1)

Published 30 Oct 2019 in cs.RO and cs.CV

Abstract: In this work, we bridge the gap between recent pose estimation and tracking work to develop a powerful method for robots to track objects in their surroundings. Motion-Nets use a segmentation model to segment the scene, and separate translation and rotation models to identify the relative 6D motion of an object between two consecutive frames. We train our method with generated data of floating objects, and then test on several prediction tasks, including one with a real PR2 robot, and a toy control task with a simulated PR2 robot never seen during training. Motion-Nets are able to track the pose of objects with some quantitative accuracy for about 30-60 frames including occlusions and distractors. Additionally, the single step prediction errors remain low even after 100 frames. We also investigate an iterative correction procedure to improve performance for control tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.