Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lightweight and Efficient End-to-End Speech Recognition Using Low-Rank Transformer (1910.13923v3)

Published 30 Oct 2019 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Highly performing deep neural networks come at the cost of computational complexity that limits their practicality for deployment on portable devices. We propose the low-rank transformer (LRT), a memory-efficient and fast neural architecture that significantly reduces the parameters and boosts the speed of training and inference for end-to-end speech recognition. Our approach reduces the number of parameters of the network by more than 50% and speeds up the inference time by around 1.35x compared to the baseline transformer model. The experiments show that our LRT model generalizes better and yields lower error rates on both validation and test sets compared to an uncompressed transformer model. The LRT model outperforms those from existing works on several datasets in an end-to-end setting without using an external LLM or acoustic data.

Citations (70)

Summary

We haven't generated a summary for this paper yet.