Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Convolutional Networks for Depth-based Human Pose Estimation (1910.13911v1)

Published 30 Oct 2019 in cs.CV

Abstract: We propose to combine recent Convolutional Neural Networks (CNN) models with depth imaging to obtain a reliable and fast multi-person pose estimation algorithm applicable to Human Robot Interaction (HRI) scenarios. Our hypothesis is that depth images contain less structures and are easier to process than RGB images while keeping the required information for human detection and pose inference, thus allowing the use of simpler networks for the task. Our contributions are threefold. (i) we propose a fast and efficient network based on residual blocks (called RPM) for body landmark localization from depth images; (ii) we created a public dataset DIH comprising more than 170k synthetic images of human bodies with various shapes and viewpoints as well as real (annotated) data for evaluation; (iii) we show that our model trained on synthetic data from scratch can perform well on real data, obtaining similar results to larger models initialized with pre-trained networks. It thus provides a good trade-off between performance and computation. Experiments on real data demonstrate the validity of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Angel Martínez-González (6 papers)
  2. Michael Villamizar (4 papers)
  3. Olivier Canévet (4 papers)
  4. Jean-Marc Odobez (24 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.