Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Deterministic Weighted Automata with Queries and Counterexamples (1910.13895v2)

Published 30 Oct 2019 in cs.LG, cs.FL, and stat.ML

Abstract: We present an algorithm for extraction of a probabilistic deterministic finite automaton (PDFA) from a given black-box LLM, such as a recurrent neural network (RNN). The algorithm is a variant of the exact-learning algorithm L*, adapted to a probabilistic setting with noise. The key insight is the use of conditional probabilities for observations, and the introduction of a local tolerance when comparing them. When applied to RNNs, our algorithm often achieves better word error rate (WER) and normalised distributed cumulative gain (NDCG) than that achieved by spectral extraction of weighted finite automata (WFA) from the same networks. PDFAs are substantially more expressive than n-grams, and are guaranteed to be stochastic and deterministic - unlike spectrally extracted WFAs.

Citations (45)

Summary

We haven't generated a summary for this paper yet.