Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sim2real gap is non-monotonic with robot complexity for morphology-in-the-loop flapping wing design (1910.13790v1)

Published 30 Oct 2019 in cs.RO

Abstract: Morphology of a robot design is important to its ability to achieve a stated goal and therefore applying machine learning approaches that incorporate morphology in the design space can provide scope for significant advantage. Our study is set in a domain known to be reliant on morphology: flapping wing flight. We developed a parameterised morphology design space that draws features from biological exemplars and apply automated design to produce a set of high performance robot morphologies in simulation. By performing sim2real transfer on a selection, for the first time we measure the shape of the reality gap for variations in design complexity. We found for the flapping wing that the reality gap changes non-monotonically with complexity, suggesting that certain morphology details narrow the gap more than others, and that such details could be identified and further optimised in a future end-to-end automated morphology design process.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com